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Abstract. We study the interaction of an exciton with a distant metal, which is the simplest problem on
interacting excitons: The semiconductor and metal electrons being “different” species, we do not have to
worry about the tricky consequences of Pauli exclusion between identical carriers, which appear in any other
problem on interacting excitons. We show how the exciton absorption, in the presence of semiconductor-
metal interaction, can be derived in a very simple and transparent way from an exciton diagram procedure,
provided that we use the appropriate exciton-metal interaction vertex, which contains the scattering from
an exciton state to another exciton state under a Coulomb excitation. We also show that the resolution
of this problem using standard electron-hole diagrams is dreadfully complicated at the lowest order in the
semiconductor-metal interaction already, preventing a full calculation of the exciton-metal coupling from
this usual technique.

PACS. 71.35.-y Excitons and related phenomena

In many problems dealing with excitons in semiconductor
physics, it would be convenient to work with the exciton
entity. However, each time we have to take into account
interactions with excitons, we must crack the excitons into
electrons and holes, and possibly tight them back into ex-
citons after having performed the interactions, as the true
physical interactions are always interactions with free elec-
trons and free holes.

If we want to work with the exciton entity, the dif-
ficulty – which is a quite major one – comes from the
fact that, while electrons or holes are true fermions, the
exciton is not a true boson. The fermionic character of
these excitons has in fact extremely tricky consequences.
Up to now, all the attempts [1–8] to include it ended by
some dressed Coulomb interactions. They all miss purely
fermionic contributions, impossible to pick up within the
procedures they use.

In these previous attempts, the exact semiconductor
Hamiltonian is basically replaced by a phenomenological
exciton Hamiltonian which is written in terms of exciton-
boson operators. If such a replacement were correct, it
would be possible to use bosonlike propagators for the ex-
citons and exciton interaction vertices deduced from the
interaction term of the phenomenological boson-exciton
Hamiltonian. With these exciton propagators and these
exciton interaction vertices, it would be then possible to
expand problems on interacting excitons in “exciton dia-
grams”, following a standard procedure.
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The trouble is that this effective Hamiltonian is barely
incorrect: besides the fact that, of course, it relies on trun-
catures, which could be justified at low exciton density
N/V , by considering the lowest order terms in Na3

x/V
(ax being the exciton Bohr radius), it also misses purely
fermionic contributions [9] of the same order in Na3

x/V .
The better proof that such purely fermionic contribu-
tions are indeed missing, comes from the fact that these
terms are necessary to restore the hermiticity of the effec-
tive exciton Hamiltonian quoted by everyone up to now:
Strangely enough, this dramatic failure for an effective
Hamiltonian has remained unnoticed up to now.

Despite all these real difficulties, we would like to find
a way of working with excitons while dealing with inter-
actions, and get out of it exact results, of course! Excitons
are (obviously) real bosons to zero order in Na3

x/V . We
may thus hope that it should be possible to use boson-like
propagators for these excitons, at least in certain limits,
provided that we have a very safe way to determine the
interaction vertices which have to be used in order to re-
cover the results obtained from an exact procedure. If such
an exact procedure exists, we can however wonder what
is the utility of finding out another way to get the same
results! As all exact interactions are written in terms of
free electrons and free holes, all secure approaches have
to use these free carriers. As shown below on the simplest
case, the diagrammatic procedure which uses these free
electrons and holes turns out to be extremely heavy, even
at lowest order. A simpler method is thus highly desirable
for both algebraic purpose and physical understanding.
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It is clear that, if instead of two species, the electron
and the hole, we manipulate one specie only, the exciton,
the diagram appearance and their calculations have to be
greatly simplified.

We would like to stress that the exciton propagator
we are going to use here depends on the exciton momen-
tum Q and relative motion state ν only. It is conceptually
quite different from a two-particle Green’s function [6,10],
(often called “exciton propagator” unproperly), which de-
pends on the “in” and “out” momenta of the pair.

In order to see how such an exciton diagram proce-
dure can emerge from the exact description of excitons in
terms of free electrons and holes, and how we can use it
in a secure way, we are going to start by the study of a
specific example which corresponds to the simplest of all
possible problems on interacting excitons, namely an exci-
ton created in a 2D quantum well and interacting with the
2D electrons of a metal located at a distance d from the
well. The reason for this problem to be the simplest one
on interacting excitons, lies in the fact that the semicon-
ductor electrons and the metal electrons are different so
that Pauli exclusion between electrons, which generates all
the tricky terms associated to the fermionic character of
the exciton, do not play any role for “different” electrons.
Consequently, we just have here to take into account the
Coulomb interaction between carriers and to derive the
scattering matrix element it induces between two exciton
states.

This paper deals with the technical aspect of this prob-
lem: We are going to introduce exciton diagrams writ-
ten with exciton propagators, exciton-photon interaction
and exciton- metal interaction. We will explain how these
interactions can be deduced exactly (i.e. without any
truncature) from the bare interactions with electrons and
holes. In order to prove the validity of the procedure, we
will compare its results to the ones obtained in a standard
way, i.e. with electron-hole (e-h) diagrams made of elec-
tron propagators, hole propagators, e-h interaction as well
as electron-metal and hole-metal interactions. The inter-
esting physics associated to this problem, i.e. the changes
in the exciton absorption lineshapes induced by the pres-
ence of the metal, and their link with Fermi edge singu-
larities are discussed elsewhere [11]. It could have been
possible to put the technical proof of this procedure as a
(long) appendix. However, these exciton propagators and
exciton diagrams could be of great help in other problems
on excitons, provided that they are handled with care.
This is why we found inappropriate to hide them at the
end of a particular problem.

We want this paper to be the basic paper for a series
of works we are going to do on interacting excitons. As we
have not found in the literature one textbook [12–14] or
review paper [6] we could cite, in which all the elementary
basics on excitons we need, are derived from scratch in
a compact form within the same notations, we start by
giving here brief derivations of many useful “well known”
results on excitons. The first part of this paper may thus
appear somewhat tutorial. In particular, it contains the
two equations which link the free e-h pair creation opera-

tors to the exciton creation operators, “exciton” meaning
the true bound states as well as the diffusive states. These
two equations are in fact the key equations for all ex-
act treatment of interactions with excitons. We also show
how the semiconductor-photon interaction appears as an
exciton-photon interaction in a natural way. We finally
show how we can extract from the semiconductor-metal
interaction, the exciton-metal vertex we need for exciton
diagrams.

In a second part, we consider the photon absorption in
the absence of semiconductor-metal interaction and use
three different approaches to recover the well known re-
sult. The first approach is barely the Fermi golden rule. In
the second one, we introduce the exciton diagram proce-
dure and we show how the usual expression of the photon
absorption immediately follows from this simplest of all
possible exciton diagrams. The third approach is based
on standard diagrams with free electrons, free holes, and
Coulomb interaction between them. It also contains a
rapid derivation of two useful quantities for exact calcula-
tions on excitons, namely the renormalized electron-hole
interaction and the renormalized semiconductor-photon
interaction.

In the last part, we calculate the photon absorption to
second order in semiconductor-metal interaction. We use
the same three approaches. The first one is again based on
the Fermi golden rule to which we add a perturbation ex-
pansion procedure. In the second approach, we use exciton
diagrams, and show that they lead to the same result in an
extremely transparent way. In the third approach, we use
standard e-h diagrams which contain the Coulomb inter-
actions between the semiconductor electron and hole, and
between them and the metal electrons in all possible ways.
This diagrammatic approach is in fact the standard way
we can think of, if we want to include the semiconductor-
metal Coulomb interaction perturbatively. It usually al-
lows to identify and sum up the dominant processes in an
easy way. For this reason, it appeared to us necessary and
useful to work it out in details. As expected, this third
method gives the result of the two previous ones. We will
however see that these e-h diagrams are dreadfully com-
plicated, so that there is no hope to be able to use them
for higher order terms in semiconductor-metal interaction.

From this last part, we can reasonably conclude that
standard electron-hole diagrams are inappropriate when
dealing with exciton interactions: Exciton diagrams are
clearly much simpler; they in fact appear as the only pos-
sible way to identify and sum up higher order processes.
We will use them in the paper dealing with an exciton
interacting with a distant metal.

1 Basics on excitons

1.1 Free e-h pairs

A free electron in a box of volume V (V = L3 in 3D and
V = L2 in 2D) is characterized by a quantum number ke
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quantified in 2π/L; its wave function is

〈r|ke〉 = 〈r|a+
ke
|v〉 =

eike·r
√
V
, (1.1)

|v〉 being the vacuum state, a+
ke

the ke free electron cre-

ation operator, and ε
(e)
ke

= ~2k2
e

2me
the corresponding free

electron energy. Similarly a free hole is characterized by
kh, b+kh

and ε
(h)
kh

= ~2k2
h

2mh
.

If we now consider a free e-h pair made of one electron
ke and one hole kh, the energy of the corresponding state
can be written in terms of the center of mass momentum
q and relative momentum k as

ε
(e)
ke

+ ε
(h)
kh

=
~2k2

2µ
+
~2q2

2M
= εk +Eq, (1.2)

where the center of mass and relative masses are given by

M = me +mh,
1
µ

=
1
me

+
1
mh
· (1.3)

The q and k momenta are related to ke and kh through
q = ke + kh and

k
µ

= v = ve − vh =
ke

me
− kh

mh
, (1.4)

so that

q = ke + kh

k = αhke − αekh
or ke = k + αeq

kh = −k + αhq (1.5)

where we have set

αe,h =
me,h

me +mh
· (1.6)

(Note that αe+αh = 1.) Consequently, a free e-h pair state
with relative momentum k and center of mass momentum
q is given by

|k,q〉 = a+
k+αeq

b+−k+αhq|v〉. (1.7)

This free pair |k,q〉 state is eigenstate of the free semicon-
ductor Hamiltonian

H0sc =
∑
k

ε
(e)
k a+

k ak +
∑
k

ε
(h)
k b+k bk, (1.8)

with the energy (εk +Eq), due to equation (1.2).

1.2 “Bound” e-h pairs or excitons

We now look for the mixtures of these free e-h pair states

|Xν,q〉 =
∑
k

φν(k)|k,q〉 = B+
ν,q|v〉, (1.9)

which are eigenstates of the semiconductor Hamiltonian

Hsc = H0sc + Vee + Vhh + Veh, (1.10)

where Vee and Vhh are the electron-electron and hole-hole
Coulomb interactions, while Veh is the electron-hole inter-
action:

Veh = −
∑

p,p′,q

Vqa
+
p+qb

+
p′−qbp′ap. (1.11)

From equations (1.8, 1.9) and (1.11), we get

Hsc|Xν,q〉 =
∑
k

φν(k)

(εk+Eq)|k,q〉−
∑
q′

Vq′ |k+q′,q〉


= Eq|Xν,q〉+

∑
k

εkφν(k)−
∑
q′′

Vq′′φν(k+q′′)

 |k,q〉,
(1.12)

so that we do have

Hsc|Xν,q〉 = (Eq + εν)|Xν,q〉, (1.13)

provided that the φν(k)′s verify

(εk − εν)φν(k) =
∑
q

Vqφν(k + q), (1.14)

Vq being the Coulomb potential Fourier transform [15].
(Vq = 4πe2/Vεq2 in 3D, and Vq = 2πe2/Vεq in 2D). Equa-
tion (1.14) is just the Fourier transform of(

p2

2µ
− e2

εr

)
|xν〉 = εν |xν〉 · (1.15)

This shows that the weight of the |k,q〉 free pair state in
the |Xν,q〉 exciton is simply

φν(k) = 〈k|xν〉 · (1.16)

In 3D, the ν index characterizing the e-h relative motion
corresponds to (n, l,m) for bound states, and (K, l,m) for
diffusive states, while in 2D, it corresponds to (n,m) and
(K,m) respectively.

Equation (1.9) leads us to define the exciton creation
operator as

B+
ν,q =

∑
k

φν(k)a+
k+αeq

b+−k+αhq. (1.17)

Let us note that it is indeed natural to divide the total
e-h pair momentum q into αeq for the electron and αhq
for the hole, as the remaining momentum k has then a
simple physical meaning: It is the momentum of the e-h
pair relative motion.

Equation (1.17) can be inverted into

a+
ke
b+kh

=
∑
ν

φ∗ν(αhke − αekh)B+
ν,ke+kh

. (1.18)

as can be directly checked by inserting (1.18) into (1.17)
and by using

δνν′ = 〈xν′ |xν〉 =
∑
k

φ∗ν′(k)φν(k). (1.19)
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Equations (1.17) and (1.18) will appear as the key equa-
tions for problems dealing with the exact treatment of
interactions involving excitons: Equation (1.17) allows to
“open” the exciton into electron and hole, such a separa-
tion being necessary to take into account the (exact) inter-
actions written in terms of individual electrons or holes.
Once these interactions have acted up, we can “close” back
the e-h pairs into excitons by using equation (1.18).

1.3 Exciton-photon interaction

The photon absorption is associated with the excitation
of one electron from the valence band to the conduction
band, i.e. with the creation of one e-h pair. Due to momen-
tum conservation, these pairs must have the same center
of mass momentum Q as the one of the absorbed photon.
This leads to write the electron-photon interaction as

He−ph =
∑
k

Aa+
k+αeQ

b+−k+αhQαQ + h.c., (1.20)

α+
Q being the creation operator for a momentum Q pho-

ton. The matrix element A can be approximated by a
constant if the transition is allowed by symmetry. Using
equation (1.18), we can rewrite this electron-photon inter-
action as

He−ph = A
∑
k,ν

φ∗ν(k)B+
ν,QαQ + h.c. (1.21)

This shows that the electron-photon interaction can also
be seen as an exciton-photon interaction:

He−ph ≡ HX−ph =
∑
ν

AνB
+
ν,QαQ + h.c. (1.22)

with a coupling constant Aν which depends on ν through

Aν = A
∑
k′

φ∗ν(k′)

= A
∑
k′

〈xν |k′〉〈k′|r = 0〉
√
V = A

√
V〈xν |r = 0〉·

(1.23)

The absorption processes corresponding to equation (1.22)
are shown in Figure 1a.

Note that we could as well write equation (1.20) in
terms of a+

k+Qb
+
−k. Of course we would get out of it the

same exciton-photon interaction, equations (1.22, 1.23).
However, here again, it is more physical to “divide” the
photon momentum Q into αeQ for the electron and αhQ
for the hole, as the remaining momentum k has then a
physical meaning.

1.4 Semiconductor-metal interaction

We now consider a semiconductor located in a 2D quan-
tum well at a distance d from a doped quantum well acting

Fig. 1. (a) Exciton-photon interaction as given by equa-
tion (1.22). (b) Exciton-metal interaction as given by equa-
tion (1.35). (c) Response function in the absence of exciton-
metal interaction, as given by exciton diagrams (Eq. (2.8)).

as a 2D metal. The metal Hamiltonian reads

Hm = H0m + Vmm

H0m =
∑
k

ε
(m)
k c+k ck

Vmm =
1
2

∑
q,k,k′

Vqc
+
k+qc

+
k′−qck′ck, (1.24)

where c+k creates a k electron in the metal. Note that, as
metal electrons and semiconductor electrons are different,
their creation operators have to be labelled by different
letters.

The metal electrons interact with each other through
Vmm. They also interact with the electrons and the holes of
the semiconductor through electron-metal and hole-metal
interactions. For 2D semiconductor electrons located at
rn and 2D metal electrons located at r̃m, the two planes
being at a distance d, the electron-metal interaction [15]
is given by

∑
n,m

e2

ε
√

(rn − r̃m)2 + d2
· (1.25)

In second quantization, this interaction reads

Vem =
∑

q,k,k′

Ṽqa
+
k+qc

+
k′−qck′ak. (1.26)
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From the standard procedure to rewrite an operator in
second quantization, we get the coupling constant Ṽq as

Ṽq =
∫∫

S

d2r

S
eiq.r e2

ε
√
r2 + d2

=
2πe2

Sεq
e−qd = Vqe−qd.

(1.27)

Similarly the hole-metal interaction is given by

Vhm = −
∑

q,k,k′

Ṽqb
+
k+qc

+
k′−qck′bk. (1.28)

1.5 Exciton-metal coupling

There is clearly no exact way to write Vem +Vhm in terms
of B+

ν,q. Nevertheless, it is possible to find out the exact
exciton change induced by Vem + Vhm as well as the cor-
responding change of the metal Fermi sea.

Let us consider the action of Vem on a state composed
of the exciton |Xν,q〉 and the metal in the excited Fermi
sea state |M〉. From equation (1.26) we get

Vem|Xν,q〉 ⊗ |M〉 =∑
q′

Ṽq′
∑
k

a+
k+q′akB

+
ν,q|v〉 ⊗

∑
k′

c+k′−q′ck′ |M〉. (1.29)

By “opening” the exciton into e-h pairs through equa-
tion (1.17), we find∑
k

a+
k+q′akB

+
ν,q|v〉 =

∑
k,p

φν(p)a+
k+q′aka

+
p+αeqb

+
−p+αhq|v〉

=
∑
k

φν(k− αeq)a+
k+q′b

+
−k+q|v〉.

(1.30)

We then “close” back these e-h pairs into excitons through
equation (1.18). This gives∑

k

φν(k− αeq)a+
k+q′b

+
−k+q|v〉 =∑

k,ν′

φν(k− αeq)φ∗ν′(k− αeq + αhq′)B+
ν′,q+q′|v〉, (1.31)

so that we finally get

Vem|Xν,q〉 ⊗ |M〉 =∑
q′,ν′

Ṽq′γ
(e)
ν′ν(q′)|Xν′,q+q′〉 ⊗

∑
k′

c+k′−q′ck′ |M〉 (1.32)

where the coupling constant γ(e)
ν′ν(q′) is given by

γ
(e)
ν′ν(q′) =

∑
k′

φ∗ν′(k
′ + αhq′)φν(k′) = 〈xν′ |eiαhq′·r|xν〉

(1.33)

as can be checked by inserting closure relations for |p〉
states on both sides of the exponential.

A similar equation is obtained for the action of Vhm on
|Xν,q〉 ⊗ |M〉, with γ

(e)
ν′ν(q′) replaced by −γ(h)

ν′ν(q′), given
by

γ
(h)
ν′ν(q′) = 〈xν′ |e−iαeq

′·r|xν〉 · (1.34)

If we now consider the action of Vem + Vhm on the same
state, we find

(Vem + Vhm)|Xν,q〉 ⊗ |M〉 =∑
q′,ν′

Ṽq′γν′ν(q′)|Xν′,q+q′〉 ⊗
∑
k′

c+k′−q′ck′ |M〉. (1.35)

The “Coulomb interaction” between the exciton and the
metal appears as the product of the bare Coulomb inter-
action Ṽq′ by

γν′ν(q′) = 〈xν′ |eiαhq′·r − e−iαeq
′·r|xν〉, (1.36)

which describes the scattering of the exciton from a ν to
a ν′ state under a q′ excitation.

Equation (1.35) shows that Vem + Vhm transforms the
exciton |Xν,q〉 into a set of other excitons, the change of
the center of mass momentum q′ being compensated by
the momentum change (−q′) in the metal Fermi sea, as
expected. The processes corresponding to equation (1.35)
are represented in Figure 1b.

2 Absorption in the absence of exciton-metal
coupling

Let us start by the calculation of the semiconductor ab-
sorption when the metal is far away, so that it does not
interact with the semiconductor. We are going to do it in
three different ways, as these three approaches turn out
to be quite complementary for the understanding of what
happens when the excitons interact with other carriers.

2.1 Approach without diagrams

The Fermi golden rule gives the absorption rate for a pho-
ton of momentum Q and energy Ω, as

A(0)(Ω,Q) =
2π
~
∑
f

|〈f |He−ph|i〉|2δ(Ef −Ei −Ω),

(2.1)

where the initial and final states |i〉 and |f〉 are eigenstates
of the semiconductor Hamiltonian Hsc. We can make the
|f〉 states formally disappearing from equation (2.1) by
rewriting A(0)(Ω,Q) as

A(0)(Ω,Q) = −2
~

ImS(0)(Ω,Q) (2.2)

S(0)(Ω,Q) = 〈i|He−ph
1

Ω +Ei −Hsc + iη
He−ph|i〉 ·

(2.3)
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(One trivially goes from Eq. (2.3) to Eq. (2.1) by inserting
two closure relations forHsc eigenstates on each side of the
fraction.)

If the initial state |i〉 is the semiconductor ground
state, i.e. the vacuum state for e-h pairs, we have, due
to equation (1.22):

He−ph|i〉 = HX−ph|v〉 =
∑
ν

Aν |Xν,Q〉, (2.4)

(where we have dropped the photon part which is in fact
included in the Ω appearing in Eq. (2.1)). From equa-
tion (2.3), we immediately find

S(0)(Ω,Q) =
∑
ν

|Aν |2
Ω − εν −EQ + iη

, (2.5)

in which we have chosen the zero energy to be the
ground state energy Ei. By taking the imaginary part of
S(0)(Ω,Q), we do recover the well known semiconductor
absorption, composed of exciton lines atΩ = εν+EQ ' εν
(since Q is very small), the corresponding line weight
being

|Aν |2 = A2V|〈r = 0|xν〉|2. (2.6)

2.2 Exciton diagrams

The exciton-photon interaction, given in equation (1.22),
is represented by Figure 1a. It may appear as reasonable
to add an Ω variable, usual for diagrams, and to impose
an (Ω,Q) conservation at each interaction vertex. If we
introduce an exciton propagator given by

Gν(Ω,Q) =
1

Ω − (εν +EQ) + iη
, (2.7)

which is quite reasonable for an object of energy (εν+EQ),
the response function S(0)(Ω,Q), represented in Figure 1c,
reads

S(0)(Ω,Q) =
∑
ν

|Aν |2Gν(Ω,Q), (2.8)

which is nothing but equation (2.5).

2.3 Electron-hole diagrams

2.3.1 Electron and hole propagators

In the case of a semiconductor having no e-h pairs, the
electron and hole propagators are given by

ge,h(ω,k) =
1

ω − ε(e,h)
k + iη

, (2.9)

(iη has to be replaced [13,14] by iη sign(εk − µ) if
the semiconductor already has e-h pairs up to a chem-
ical potential µ). In most problems on excitons, these

Fig. 2. Dyson equation satisfied by the renormalized e-h in-
teraction, as given by equation (2.11).

electron and hole propagators appear through the com-
bination [6,12]

Geh(ω,k,q) =
∫

idω1

2π
ge(ω1 + ω,k+αeq)gh(−ω1,−k+αhq)

=
1

ω − ε(e)
k+αeq

− ε(h)
−k+αhq + iη

=
1

ω − εk −Eq + iη
·

(2.10)

Geh(ω,k,q) can be seen as the propagator of a free e-h
pair of energy (εk +Eq).

2.3.2 Renormalized e-h Coulomb interaction
and electron-photon interaction

The only thing one electron and one hole can do is
to repeatedly interact via Coulomb interaction. From
these repeated Coulomb interactions, we can construct a
renormalized e-h Coulomb interaction and a renormalized
electron-photon interaction.

(i) The first one, shown in Figure 2, verifies the Dyson
equation

Wk,k′(ω, q) = −Vk−k′

−
∑
k′′

Vk−k′′Geh(ω,k′′,q)Wk′′,k′(ω,q). (2.11)

We can solve this integral equation by expanding Vk−k′ ,
taken as a function of k, on the φν(k) functions which can
serve as a basis for k functions. This leads to

Vk−k′ =
∑
ν

vνφ
∗
ν(k). (2.12)

The same φν(k) basis can be used to expand L(k) de-
fined as

L(k) = Geh(ω,k,q)Wk,k′(ω,q) =
∑
ν

lνφ
∗
ν(k). (2.13)

We insert these expansions into the Dyson equation (2.11),
and we use equation (2.10) for Geh. This leads to

(ω − εk −Eq + iη)
∑
ν

lνφ
∗
ν(k) =

−
∑
ν

vνφ
∗
ν(k)−

∑
k′′,ν

Vk−k′′ lνφ
∗
ν(k′′). (2.14)
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The sum over k′′ can be obtained from equation (1.14),
so that the above equation gives∑

ν

[lν(ω − εν −Eq + iη) + vν ]φ∗ν(k) = 0, (2.15)

which should be verified for all k. This imposes lν to be
given by

lν = − vν
ω − εν −Eq + iη

= −vνGν(ω,q). (2.16)

We then note that equation (2.12) can be inverted as

vν =
∑
k

Vk−k′φν(k) = (εk′ − εν)φν(k′)

=
[
G−1
ν (ω,q)−G−1

eh (ω,k′,q)
]
φν(k′), (2.17)

due to equation (1.14), so that, from equa-
tions (2.13, 2.16, 2.17), we finally get the renormalized
e-h Coulomb interaction [6] as

Wk,k′(ω,q) =
1

Geh(ω,k,q)

∑
ν

Gν(ω,q)

×
[

1
Geh(ω,k′,q)

− 1
Gν(ω,q)

]
φ∗ν(k)φν(k′)

=
1

Geh(ω,k,q)

[
−δkk′ +

1
Geh(ω,k′,q)

×
∑
ν

Gν(ω,q)φ∗ν(k)φν(k′)

]
.

(2.18)

(ii) We now turn to the renormalized electron-photon in-
teraction [12] shown in Figure 3. The “in” interaction
reads

A
(in)
k (Ω,Q) = A+A

∑
k′

Geh(Ω,k′,Q)Wk′,k(Ω,Q).

(2.19)

By using Wk′,k as given by equation (2.18) and the defi-
nition of Aν given in equation (1.23), we get

A
(in)
k (Ω,Q) =

1
Geh(Ω,k,Q)

∑
ν

Aνφν(k)Gν(Ω,Q).

(2.20)

A similar calculation gives the “out” interaction as

A
(out)
k (Ω,Q) = A∗ +A∗

∑
k′

Geh(Ω,k′,Q)Wk,k′(Ω,Q)

=
1

Geh(Ω,k,Q)

∑
ν

A∗νφ
∗
ν(k)Gν(Ω,Q).

(2.21)

Note that A(in)
k andA(out)

k are not complex conjugate since
Geh and Gν are not real.

Fig. 3. Dyson equation satisfied by the renormalized
semiconductor-photon interaction for “in” and “out” processes,
as given by equations (2.19) and (2.21) respectively.

Fig. 4. (a) Set of diagrams leading to the response function
in the absence of exciton-metal interaction. (b) Summation
of these diagrams by using the renormalized e-h interaction
(Eq. (2.22)). (c) (resp. (d)) Summation of these diagrams by us-
ing the renormalized “in” (resp. “out”) semiconductor-photon
interaction (Eq. (2.23)).

2.3.3 Absorption diagrams

The diagrammatic expansion of the response function cor-
responds to the set of ladder diagrams shown in Figure 4a.
They can be summed up by using either Wk,k′ or A(in)

k

or A(out)
k .
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• These ladder diagrams correspond to the two diagrams
of Figure 4b. They are thus given by

S(0)(Ω,Q) = AA∗

∑
k

Geh(Ω,k,Q)+
∑
k,k′

Geh(Ω,k,Q)

×Wk,k′(Ω,Q)Geh(Ω,k′,Q)
]

= AA∗
∑
k,k′

Geh(Ω,k,Q)

× [δk,k′ +Wk,k′(Ω,Q)Geh(Ω,k′,Q)] .
(2.22)

From equation (2.18), we see that the δkk′ terms dis-
appear from the bracket and the remaining term gives
the same result as the one previously obtained in equa-
tion (2.8).
• The same set of ladder diagrams also corresponds to

one of the two diagrams of Figures 4c and d. Using
equations (2.20) or (2.21) we get [12]

S(0)(Ω,Q) = A∗
∑
k

A
(in)
k (Ω,Q)Geh(Ω,k,Q)

= A
∑
k

A
(out)
k (Ω,Q)Geh(Ω,k,Q)

=
∑
ν

|Aν |2Gν(Ω,Q), (2.23)

i.e. the same result again.
We see that, while the three approaches hopefully give

the same result, the exciton diagram procedure already
appears as being the simplest one, both visually and alge-
braically. The difference is even more dramatic when the
problem contains more carriers than the photocreated e-h
pair, as we now show.

3 Photon absorption to lowest order
in semiconductor-metal interaction

We now want to include the electron-metal and hole-metal
interaction to lowest order (which will turn out to be sec-
ond order). We will however neglect Coulomb interaction
between the metal electrons for simplicity: It just changes
the internal readjustment of the metal to an external ex-
citation, but does not affect the technical difficulty of the
problem resulting from the additional interaction felt by
the electron and hole making the exciton.

Here again we derive the result by the same three pro-
cedures we previously used.

3.1 Approach without diagrams

We must now consider a system made of the semiconduc-
tor and the metal, in interaction with each other. The

total Hamiltonian is thus

H = H0 + Vem + Vhm with H0 = Hsc +H0m,
(3.1)

if we forget Vmm. The response function for such a system
is given by

S(Ω,Q) = 〈i|He−ph
1

Ω −H + iη
He−ph|i〉, (3.2)

where the initial state is now

|i〉 = |v〉 ⊗ |M0〉, (3.3)

|M0〉 being the metal ground state. We will take again
the zero energy such that Ei = 0. The response function
S(Ω,Q) can be expanded in V = (Vem + Vhm) by using
the well known expansion procedure:

1
a−H =

1
a−H0

+
1

a−H0
V

1
a−H0

+
1

a−H0
V

1
a−H0

V
1

a−H0
+ · · · (3.4)

• The zero order term simply gives S(0)(Ω,Q) as calcu-
lated in the absence of metal electrons.
• The first order term gives zero: As Vem + Vhm cre-

ates one e-h pair in the metal Fermi sea, we do have
〈M0|Vem + Vhm|M0〉 = 0.
• The second order term, which is thus the lowest order

one, can be written as

S(2)(Ω,Q) =
〈
Ψ (1)| 1

Ω −H0 + iη
|Ψ (1)

〉
, (3.5)

|Ψ (1)〉 = (Vem + Vhm)|Ψ (0)〉,

|Ψ (0)〉 =
1

Ω −H0 + iη
He−ph|v〉 ⊗ |M0〉· (3.6)

From equations (2.4) and (2.7), we immediately get

|Ψ (0)〉 =
∑
ν

AνGν(Ω,Q)|Xν,Q〉 ⊗ |M0〉 · (3.7)

Then, we use equation (1.35) to get the action of (Vem +
Vhm) on the above ket. This gives |Ψ (1)〉 as

|Ψ (1)〉
∑
ν,ν1

∑
q,p

AνGν(Ω,Q)

× Ṽqγν1ν(q)|Xν1,Q+q〉 ⊗ c+p−qcp|M0〉 · (3.8)

The metal part differs from zero for p inside and p − q
outside the Fermi sea only.
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In S(2)(Ω,Q) thus appears

〈M0|c+p′cp′−q′ ⊗ 〈Xν2,Q+q′ |
1

Ω −H0 + iη
|Xν1,Q+q〉

⊗ c+p−qcp|M0〉 =
δpp′δqq′δν1ν2

Ω − (εν1 +EQ+q + ε
(m)
p−q − ε

(m)
p ) + iη

·

(3.9)

So that the second order response function is finally
given by

S(2)(Ω,Q) =∑
ν,ν′,ν1

∑
q

A∗νAν′ Ṽ
2
q γνν1(q)γν1ν′(−q)Gν(Ω,Q)Gν′(Ω,Q)

×
∑
p in

p−q out

Gν1(Ω + ε(m)
p − ε(m)

p−q,Q + q), (3.10)

since γ∗ν′ν1
(q) = γν1ν′(−q) (see Eq. (1.36)). We note that

while the bare interaction (Vem + Vhm) acts on the indi-
vidual electron or hole inside the exciton, the final result
indeed reads in terms of exciton energies only.

3.2 Exciton diagrams

We now recover the same result by using exciton diagrams.
The second order diagram in the exciton-metal interaction
is shown in Figure 5. In it, we have used the (ω,q) con-
servation at each interaction vertex. This diagram is thus
given by

S(2)(Ω,Q) =
∑
ν,ν′,ν1

∑
q

AνA
∗
ν′ Ṽ

2
q γν′ν1(−q)

× γν1ν(q)Gν(Ω,Q)Gν′(Ω,Q)

×
∫

idω
2π

Gν1(Ω + ω,Q + q)B0(ω,q), (3.11)

where B0(ω,q) is the usual “bubble” contribution. In
terms of the metal electron propagator

gm(ω,p) =
1

ω − ε(m)
p + iηsign

(
ε

(m)
p − µ

) , (3.12)

this “bubble” contribution is given by

B0(ω,p) = −
∑
p

∫
idω′

2π
gm(ω′ − ω,p− q)gm(ω′,p)

=
∑
p in

p−q out

(
1

ω + ε
(m)
p − ε(m)

p−q + iη

+
1

−ω + ε
(m)
p − ε(m)

p−q + iη

)
·

(3.13)

Fig. 5. Response function to second order in semiconductor-
metal interaction, as given by exciton diagrams (Eq. (3.11)).

Inserting equation (3.13) into the last integral of equa-
tion (3.11), we get

∫
idω
2π

Gν1(Ω + ω,Q + q)B0(ω,q) =∑
p in

p−q out

Gν1(Ω + ε(m)
p − ε(m)

p−q,Q + q), (3.14)

so that the exciton diagram procedure does give the same
result as the one obtained from the direct calculation of
the response function (Eq. (3.10)).

3.3 Electron and hole diagrams

In this last paragraph, we are going to recover the same re-
sult by using standard diagrams written with free electron
and free hole propagators. Although basically “straightfor-
ward”, this standard e-h diagram procedure is going to be
quite heavy.

The first task is to draw all the possible diagrams, with
as many Veh interactions as we wish (including none), and
two (Vem +Vhm) interactions, i.e. two Vem, or two Vhm, or
one Vem and one Vhm (or the reverse), these electron-metal
and hole-metal interactions having any possible position
with respect to the Veh interactions. All these possible di-
agrams are shown in Figure 6. In order to draw them up,
we have been already forced to use the renormalized e-h
Coulomb interaction and renormalized electron-photon in-
teraction introduced in Section 2. In view of this Figure 6,
it is clear that the obtention of the second order response
function, as given in the compact form of equation (3.10),
is going to be far from obvious.

One disturbing aspect of this problem is the fact that
the processes in which the two semiconductor-metal inter-
actions have not any e-h Coulomb interaction in between
as in Figures 6a, b, c, seem to be topologically separated
from the processes in which they have one or more Veh

interactions, as in Figures 6a′, b′, c′, c′′. This somewhat
disturbs our usual picture of an exciton seen as the re-
sult of zero, one, two... e-h Coulomb interactions, the zero
term being part of these “ladder” processes. Some kind of
algebraic “miracle” must take place somewhere in the cal-
culation, in order to end up with a result, equation (3.10),
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Fig. 6. Response function to second order in semiconductor-metal interaction, as given by standard e-h diagrams: (a) and (a′)
with two electron-metal interactions (Eq. (3.16)); (b) and (b′) with two hole-metal interactions; (c), (c′) and (c′′) with one
electron-metal and one hole-metal interaction (Eqs. (3.22) and (3.24)).

in which everything is written in terms of (full) excitons,
with the “zero” order term included along with the higher
order ones.

3.3.1 Terms in V2
em or V2

hm

The terms which contain two electron-metal interactions
correspond to the diagrams 6a and 6a′. They are some-
what similar except for the second ge(ω1 +Ω,k1 + αeQ)
propagator of Figure 6a which, in 6a′, is replaced by

g̃e(ω,Ω,k1,k2,q,Q) = Wk1+αhq,k2+αhq(ω +Ω,q + Q)

×
∫

idω2

2π
ge(ω2 +Ω,k2 + αeQ)

× ge(ω2 + ω +Ω,k2 + q + αeQ)gh(−ω2,−k2 + αhQ).
(3.15)

The contribution of the two diagrams 6a and 6a′ can thus
be written as

Sa+a′(Ω,Q) =
∑

k1,k2,q

A
(in)
k1

(Ω,Q)A(out)
k2

(Ω,Q)Ṽ 2
q

×
∫

idω
2π

B0(ω,q)Ie(ω,Ω,k1,k2,q,Q), (3.16)

Ie(ω,Ω,k1,k2,q,Q) =
∫

idω1

2π
ge(ω1 +Ω,k1 + αeQ)

× gh(−ω1,−k1 + αhQ)ge(ω1 + ω +Ω,k1 + q + αeQ)
× [δk1k2ge(ω1 +Ω,k1 + αeQ) + g̃e(ω,Ω,k1,k2,q,Q)].

(3.17)
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By using equation (2.9) for ge,h, we can perform the inte-
gration over ω2 in equation (3.15), which gives

g̃e(ω,Ω,k1,k2,q,Q) = Wk1+αhq,k2+αhq(ω +Ω,q + Q)
×Geh(Ω,k2,Q)Geh(ω +Ω,k2 + αhq,q + Q), (3.18)

where Geh is the free e-h pair propagator defined in equa-
tion (2.10). Inserting this result in equation (3.17), and
performing the integration over ω1 in the same way, we
get

Ie(ω,Ω,k1,k2,q,Q) = Geh(Ω,k1,q)Geh(Ω,k2,q)
×Geh(ω +Ω,k1 + αhq,q + Q)

× [δk1k2 +Wk1+αhq,k2+αhq(ω +Ω,q + Q)
×Geh(ω +Ω,k2 + αhq,q + Q)]. (3.19)

Then the (first) necessary “miracle” takes place: A look
at equation (2.18) shows that the renormalized e-h in-
teraction Wk1+αhq,k2+αhq contains a δk1k2 term which
cancels the δk1k2 term of equation (3.19) (originating
from diagram 6a). By inserting equation (2.18) into equa-
tion (3.19), we are left with Ie written in terms of Gν
and Geh while we expect Sa+a′ to depend on Gν only.
We then note that A(in)

k1
and A

(out)
k2

appearing in equa-
tion (3.16) also contain Geh factors: By using equa-
tions (2.20) and (2.21), we find that all the Geh factors
finally disappear, and we get

A
(in)
k1

(Ω,Q)A(out)
k2

(Ω,Q)Ie(ω,Ω,k1,k2,q,Q) =∑
ν,ν′,ν1

A∗ν′Aνφ
∗
ν′(k2)φν(k1)φ∗ν1

(k1 + αhq)φν1(k2 + αhq)

×Gν′(Ω,Q)Gν(Ω,Q)Gν1(ω +Ω,q + Q), (3.20)

which depends on Gν only. Inserting this result into equa-
tion (3.16) and using equations (1.33) and (3.14), we fi-
nally get

Sa+a′(Ω,Q) =
∑
ν,ν′,ν1

∑
q

A∗ν′Aν Ṽ
2
q 〈xν′ |e−iαhq.r|xν1〉

× 〈xν1 |eiαhq.r|xν〉Gν′(Ω,Q)Gν(Ω,Q)

×
∑
p in

p−q out

Gν1(Ω + ε(m)
p − ε(m)

p−q,Q + q). (3.21)

We already see that Sa+a′(Ω,Q) does look like
S(2)(Ω,Q), except for γν1ν(q) which is here replaced by
〈xν1 |eiαhq.r|xν〉, i.e. a part of γν1ν(q) only, as can be seen
from equation (1.36).

The terms with two Vhm correspond to the diagrams 6b
and 6b′. A similar calculation shows that their contribu-
tion, Sb+b′(Ω,Q), is obtained from Sa+a′(Ω,Q) by replac-
ing αh by (−αe).

3.3.2 Terms in VemVhm

They correspond to diagram 6c, and to diagrams 6c′ and
6c′′ which are different, since the processes in which Vem

acts before Vhm are not equivalent to the processes in
which it acts after Vhm. We could think that, as for the
terms in V 2

em, it would be convenient to consider diagrams
6c and 6c′ together in order to have the same “miracu-
lous” simplification appearing in a natural way. However
we could as well consider diagrams 6c and 6c′′ together.
The trouble is that diagram 6c appears once only. In fact,
if we look at diagram 6c more carefully, we see that it
contains two ge and two gh, while diagram 6a contained
three ge and one gh. Integration over ω1 thus leads to one
term only in the contribution of diagram 6a, while it leads
to two terms in the contribution of diagram 6c. It turns
out that one of these terms makes one of the “miraculous”
simplifications with the δk1k2 term of diagram 6c′, while
the other term cancels the δk1k2 term of diagram 6c′′.

More precisely, the contribution of diagram 6c reads

Sc(Ω,Q) = −
∑
k1,q

A
(in)
k1

(Ω,Q)A(out)
k1+q(Ω,Q)Ṽ 2

q

×
∫

idω1

2π

∫
idω
2π

B0(ω,q)ge(ω1 +Ω,k1 + αeQ)

× ge(ω1 + ω +Ω,k1 + q + αeQ)gh(−ω1,−k1 + αhQ)
× gh(−ω1 − ω,−k1 − q + αhQ). (3.22)

After integration over ω1 and ω, we get it as the sum of
two terms:

Sc(Ω,Q) = −
∑
k1,q

A
(in)
k1

(Ω,Q)A(out)
k1+q(Ω,Q)

× Ṽ 2
qGeh(Ω,k1,Q)Geh(Ω,k1 + q,Q)

×
∑
p in

p−q out

[Geh(Ω + ε(m)
p − ε(m)

p−q,k1 + αhq,Q + q)

+Geh(Ω + ε(m)
p − ε(m)

p−q,k1 + αeq,Q− q)]. (3.23)

If we now turn to diagram 6c′, its contribution reads

Sc′(Ω,Q) = −
∑

k1,k2,q

A
(in)
k1

(Ω,Q)A(out)
k2+q(Ω,Q)

× Ṽ 2
q

∫
idω1

2π

∫
idω2

2π

∫
idω
2π

B0(ω,q)

×Wk1+αhq,k2+αhq(ω +Ω,q + Q)ge(ω1 +Ω,k1 + αeQ)
×ge(ω1 +ω+Ω,k1 +q+αeQ)ge(ω2 +ω+Ω,k2 +q+αeQ)

× gh(−ω1,−k1 + αhQ)gh(−ω2,−k2 + αhQ)
× gh(−ω2 − ω,−k2 − q + αhQ). (3.24)
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We integrate over ω1 and ω2 and replace W by its explicit
value given in equation (2.18). This leads to

Sc′(Ω,Q) = −
∑

k1,k2,q

A
(in)
k1

(Ω,Q)A(out)
k2+q(Ω,Q)Ṽ 2

q

×
∫

idω
2π

B0(ω,q)Geh(Ω,k1,Q)Geh(Ω,k2 + q,Q)

×
[
− δk1k2Geh(ω +Ω,k1 + αhq,q + Q)

+
∑
ν1

Gν1(ω +Ω,q + Q)φ∗ν1
(k1 + αhq)φν1(k2 + αhq)

]
.

(3.25)

We first consider the term in δk1k2 and make the inte-
gration over ω. As claimed above, it gives a contribu-
tion, Sc′1(Ω,Q), which cancels exactly the first term of
Sc(Ω,Q) given in equation (3.23). As to the remaining
term of Sc′ , after integration over ω, it reads

Sc′2(Ω,Q) = −
∑

k1,k2,q

A
(in)
k1

(Ω,Q)A(out)
k2+q(Ω,Q)

× Ṽ 2
qGeh(Ω,k1,Q)Geh(Ω,k2 + q,Q)

×
∑
ν1

φ∗ν1
(k1 + αhq)φν1(k2 + αhq)

×
∑
p in

p−q out

Gν1(Ω + ε(m)
p − ε(m)

p−q,Q + q). (3.26)

We then replace A(in)
k1

and A
(out)
k2+q by their explicit values

given in equations (2.20) and (2.21), and perform the sum-
mations over k1 and k2 using equation (1.33). We finally
get

Sc′2(Ω,Q) = −
∑
ν,ν′,ν1

∑
q

A∗ν′Aν Ṽ
2
q

× 〈xν′ |eiαeq.r|xν1〉〈xν1 |eiαhq·r|xν〉Gν(Ω,Q)Gν′(Ω,Q)

×
∑
p in

p−q out

Gν1(Ω + ε(m)
p − ε(m)

p−q,Q + q). (3.27)

A similar calculation done for the contribution of diagram
6c′′ shows that the first term, Sc′′1(Ω,Q), cancels the sec-
ond term of Sc(Ω,Q) as given in equation (3.23), while
the second term, Sc′′2(Ω,Q) is obtained from Sc′2(Ω,Q)
by changing αe into (−αh) and αh into (−αe).

3.3.3 Terms in (Vem + Vhm)2

Their contributions correspond to diagrams 6a to 6c′′. Us-
ing equation (1.36), it is easy to check that their sum,

S(2)(Ω,Q) = Sa+a′(Ω,Q) + Sb+b′(Ω,Q)
+ Sc′2(Ω,Q) + Sc′′2(Ω,Q), (3.28)

gives the same expression as the one obtained in equa-
tion (3.10): After a lot of efforts, we have proved that the
method using electron and hole diagrams does give the
same result as the one using exciton diagrams. Very hon-
estly, we would have hardly found all these “miraculous”
simplifications if we had not been convinced by the exciton
diagrams that they must exist.

4 Conclusion

We have introduced an exciton diagram procedure and
have shown on two specific examples (a semiconductor
without any interaction, and a semiconductor interacting
with a distant metal to second order in this interaction)
that it allows to recover in an extremely elegant way the
results obtained from standard diagrams with free elec-
trons and holes.

This procedure is based on the following rules:
• We associate to each exciton line an exciton propagator

given by

Gν(ω,q) =
1

ω − εν −Eq + iη
· (4.1)

Note that this exciton propagator only depends on
the (ν,q) quantum numbers characterizing the exci-
ton state, by contrast with the two-particle Green’s
function, unproperly called exciton propagator, which
depends on the “in” and “out” electron and hole mo-
menta.
• We associate to the exciton-photon interaction, the

vertex

Aν = A
√
V〈xν |r = 0〉 · (4.2)

• In the case of a semiconductor-metal interaction, which
appears through interactions with free electrons and
free holes, we determine the corresponding vertex by
calculating

V |Xν,q〉 ⊗ |M〉 · (4.3)

In order to do it, we “open” the exciton into e-h pairs
through

|Xν,q〉 = B+
ν,q|0〉 =

∑
k

φν(k)a+
k+αeqb

+
−k+αhq|v〉 ·

(4.4)

We calculate the action of V on these free e-h pairs,
and we write them back in terms of excitons by using

a+
ke
b+kh

=
∑
ν

φ∗ν(αhke − αekh)B+
ν,ke+kh

. (4.5)

This leads to

V |Xν,q〉 ⊗ |M〉 =
∑
ν′,q′

Ṽq′γν′ν(q′)|Xν′,q+q′〉 ⊗ |M ′(q′)〉,

(4.6)

from which we extract the value of the exciton-metal
vertex interaction as being Ṽq′γν′ν(q′).
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• At each vertex interaction, we force (ω,q) conserva-
tion, and we sum up over all the remaining free vari-
ables.

We have here proved, by calculating explicitly the second
order term in the semiconductor-metal interaction, that
this exciton diagram procedure gives the same result as
the one obtained from a very safe but extremely tedious
calculation using e-h diagrams. If we want to go beyond
second order in the semiconductor-metal interaction, and
classify the set of “dominant” processes in these inter-
actions with a distant metal, as done in an independent
publication [11], it is clearly completely hopeless to use
this e-h diagram procedure. On that respect, the exciton
diagrams provide a clear and enlightening picture of what
physically happens. Let us mention that the procedure
“without diagram” we also give here, is also quite inap-
propriate to an extension to high order processes, as it is
basically an algebraic version of the e-h diagram (Green’s
function) procedure.

By considering the interaction of an exciton with dis-
tant carriers, we have avoided the extremely tricky conse-
quences of Pauli exclusion between two identical electrons
(or holes). The derivation of the correct vertex interaction
which has to be used in exciton diagrams for problems
dealing with two or more identical carriers from which an
exciton can be made, will be the subject of forthcoming
publications.
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